قضایای بهترین تقریب برای نگاشت های غیر انبساطی و همچگال در فضاهای متریک ابر محدب

پایان نامه
چکیده

هدف از این مقاله معرفی فضاهای ابر محدب , ابر محدب خارجی ,r- درخت ها و نگاشت های غیر انبساطی و همچگال است. وجود بهترین تقریب در این فضاها برای چنین نگاشت هایی مورد بحث قرار می گیرد. همچنین بهترین تقریب در فضاهای خطی نرمدار و وجود نقاط ثابت در فضاهای متریک ابر محدب مورد بررسی قرار می گیرد. مسائل تقریب پایا نیز از بحث های مهمی هستند که در این پایاین نامه به آنها پرداخته شده است .

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقطه های بهترین تقریب در فضاهای متریک

در این پایان نامه ابتدا مفهوم نگاشت های انقباض میر-کیلر(meir-keeler) را معرفی نموده و قضیه وجود و یکتایی نقطه ی بهترین تقریب را برای چنین نگاشت هایی اثبات می کنیم. سپس گسترشی از رده ی نگاشت های انقباض دوری را معرفی نموده و قضیه ی وجود و یکتایی نقاط بهترین تقریب برای چنین نگاشت هایی را اثبات می کنیم. سپس، نگاشت های انقباضی پروکسیمال از نوع اول و دوم را تعریف کرده و به بررسی وجود نقاط بهترین تق...

15 صفحه اول

روش تقریب چسبندگی برای یک خانواده متناهی از نگاشت های غیر انبساطی فضاهای باناخ

در این پایان نامه ابتدا وجود نقطه ثابت برای نگاشت غیر انبساطی بررسی و سپس برای تعیین نقطه ثابت از روش تقریب چسبندگی استفاده می گردد. در این روش الگوریتم تکرار معرفی و با استفاده از آن نحوه بدست آوردن نقطه ثابت مورد بحث قرار می گیرد . سپس با تعمیم این الگوریتم نقطه ثابت مشترک برای خانواده متناهی از نگاشتهای غیر انبساطی در فضای باناخ مورد بررسی قرار می گیرد.

15 صفحه اول

قضایای نقطه ثابت مشترک برای نگاشت های انقباضی خاص در فضاهای g-متریک و فضاهای متریک مرتب

تعریف و بررسی خواص فضاهای g-متریک و وجود و یکتایی نقطه ثابت مشترک در فضاهای g-متریک و هم چنین در فضاهای متریک مرتب و وجود و یکتایی نقاط ثابت چهارتایی انقباض های غیر خطی در فضاهای متریک مرتب.

قضایای همگرایی تکرار جدید برای نگاشت های مجانباً نا انبساطی در فضاهای باناخ

در این پایان نامه مسئله تقریب تکراری اصلاح شده نقاط ثابت مشترک نگاشت های مجانباً نا انبساطی در چارچوب فضاهای باناخ مورد بررسی قرار گرفته است.

وجود و همگرایی بهترین نقطه تقریب در فضاهای متریک

اگر t خود نگاشتی باشدکه روی اجتماع دو زیرمجموعه ی a , bاز یک فضای متریک تعریف شود، آنگاه بهترین نقطه تقریب برای نگاشت t عبارت است از نقطه ای مانند x که d(x,tx) = dist(a,b). در این ژایان نامه در ابتدا با بیان مفهوم نگاشت انقباض دوری نتایج وجودی بهترین نقطه تقریب برای انقباض های دوری در فضای باناخ به طور یکنواخت محدب بیان می شود و با معرفی خاصیت uc تعمیمی از قضایای موجود برای فضای متریک با خاصیت ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023